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Deep Neural Networks have found numerous complex 

applications across various domains, including 

intelligent robots, autonomous systems, advanced 

manufacturing, computer vision, natural language 

processing, and other engineering and scientific fields. 

These technologies have been increasingly 

incorporated into higher education curricula and are 

being taught extensively to learners. However, the 

inherent "black box" nature of deep neural networks 

lacks transparency making it difficult to comprehend 

their inner workings, therefore hindering the learning 

process and the effective application of these AI 

techniques in real-world scenarios. To address these 

challenges, there is a growing demand for explainable 

AI using visualisation tools and techniques that can 

enhance educational experience by making deep 

learning concepts more accessible and 

understandable. These tools have the potential to 

demystify the complex processes within neural 

networks, thereby fostering a deeper understanding 

and trust in the models’ predictive ability and 

behaviours.  

 

This paper investigates how AI visualisation tools 

integrated within a blended learning framework can 

enhance student engagement in teaching AI. We 

introduced visualisation tools such as TensorFlow 

Playground, exploRNN, along with explainable AI 

(XAI) techniques like Local Interpretable Model-

Agnostic Explanations (LIME) and SHapley Additive 

exPlanations (SHAP), to enhance the comprehension 

of deep learning models such as Convolutional Neural 

Networks (CNN), Generative Adversarial Networks 

(GAN), Recurrent Neural Networks (RNN), and Long 

Short-Term Memory (LSTM) networks. The 

interactive features of the AI visualisation tool, along 

with explainable AI (XAI) techniques, allow learners 

to explore the internal patterns of black-box models 

and help them understand how these models make 

decisions. 

 

A survey, involving over 30 students, was conducted 

to gather feedback on the AI lessons, which spanned 

a duration of 15 hours. The survey included both 

qualitative and quantitative questions to evaluate the 

students' experiences across multiple dimensions, 

such as overall learning experience, lab session 

interactivity, the effectiveness of pre-class videos, and 

engagement in classroom discussions. The findings 

indicate preference among students for the blended 

learning model, particularly valuing the interactive, 

hands-on components such as lab sessions that 

employ AI visualisation tools. These responses 

highlight the effectiveness of XAI and visualisation 

tools in enhancing engagement and fostering a deeper 

understanding of complex AI concepts. The result 

emphasizes the benefits of integrating interactive 

visualisation tools within a blended learning 

environment for AI education. Future research will 

focus on implementing an integrated AI visualisation 

toolbox and investigate the long-term impact of the 

toolbox on student engagement and the retention of 

deep learning concepts.  
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1. Introduction 

 

Artificial Intelligence (AI), particularly deep neural 

networks (DNNs) has found widespread application in 

diverse fields such as computer vision, robotics, 

autonomous vehicles, and other scientific disciplines. 

The underlying technologies and applications of DNNs 

have been integrated into higher education curricula and 

are now extensively taught to students across various 

engineering and computer science disciplines. This broad 

inclusion aims to equip learners with the necessary skills 

and knowledge to navigate and contribute to the rapidly 

evolving field of AI. However, the applications of deep 

learning to solve real-world problems necessitates strong 

technical skills, including proficiency in a programming 

language. Learners new to this field, with limited or no 

technical background in neural networks, tend to be 

overwhelmed when grappling with the foundational 

aspects of AI. Furthermore, the "black box" nature of 

DNNs present a significant hinderance for educators 

seeking to foster meaningful understanding among 

learners, preventing the latter from confidently 

explaining, trusting and applying deep learning 

techniques to solve real-world problems.  
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In recent years, the research community has placed 

increasing emphasis on AI visualisation, recognizing its 

pivotal role in enhancing the comprehension of complex 

deep learning concepts. Such tools have become 

indispensable for demystifying AI model behaviour and 

facilitating deeper insights into their underlying 

mechanisms. For example, TensorFlow Playground 

(Smilkov et al., 2017) provides an interactive interface 

that enables users to manipulate neural network 

parameters directly—without requiring programming 

expertise—thereby accelerating the development of 

intuition regarding network architectures, loss functions, 

and learning dynamics. Similarly, GAN Lab offers a 

specialized environment for non-experts to explore 

generative adversarial networks (GANs), a sophisticated 

class of deep learning models. Through a hands-on, 

intuitive approach, learners can interactively train the 

models while visualizing real-time training processes, 

bridging the gap between theoretical principles and 

practical understanding (Kahng et al., 2019). 

Nevertheless, while these tools provide powerful visuals, 

they do not explain the underlying decision-making 

process of these complex AI systems. For effective real-

world application, students must develop not only 

procedural knowledge of DNN operations but also 

comprehend and validate system decisions—a critical 

requirement for establishing trust in AI outputs. XAI 

techniques, specifically, LIME (Ribeiro et al., 2016) and 

the SHAP (Lundberg & Lee, 2017) are effective 

resources for exploring deep learning and presenting the 

decision process of complex black-box models in a more 

understandable way to the learners.  

 

In this paper, we propose a blended-learning 

framework that integrates interactive AI visualisation 

tools and XAI programming methods to facilitate the 

learning of foundational AI concepts among AI learners. 

This integrated framework aims to advance deep learning 

pedagogy by combining theoretical instruction with 

experiential learning. Our pedagogical framework 

integrates a tripartite structure comprising: (1) 

preparatory video lectures for foundational knowledge 

acquisition, (2) collaborative in-class discussions to 

reinforce conceptual understanding, and (3) class activity 

such as hands-on laboratory (lab) sessions utilizing 

interactive visualisation tools. The interactive lab 

components (e.g., TensorFlow Playground, GAN Lab) 

provide an experimental sandbox environment where 

learners can directly manipulate core neural network 

hyperparameters—including learning rates, activation 

functions, and optimization settings—while visualizing 

real-time impacts on model behaviour. This hands-on 

approach is augmented with XAI programming 

techniques to illuminate the models’ decision-making 

process, thereby demystifying the traditionally “black-

box” characteristic of deep learning systems. Our 

pedagogical framework demonstrates measurable 

improvements in learner engagement when mastering 

complex deep learning concepts. The remainder of this 

paper is organized as follows: Section 2 reviews related 

work in AI education tools and explainable deep learning 

pedagogies. Section 3 details our blended learning 

framework, including its instructional design and 

technical implementation. Section 4 presents the 

experimental methodologies, including participant 

selection, control/intervention group design, and the 

validated survey questions used to measure student 

engagement in learning AI. Section 5 provides a 

comprehensive analysis of the results, comparing 

quantitative findings with qualitative insights from 

student feedback. Finally, Section 6 concludes with 

contributions, limitations, and future research directions 

in AI education. 

 

2. Related Work 

 

Recent advances in AI education research have 

established visualisation tools as essential pedagogical 

instruments for cultivating both conceptual 

understanding and learner engagement. These studies 

demonstrate how interactive visual representations 

significantly enhance cognitive engagement by making 

abstract algorithmic processes more accessible and 

intuitively understandable. Naps et. al (2003) explored 

the role of visualisation and engagement in computer 

science education, posited that visualisation medium, 

regardless of its design quality, holds minimal 

educational value unless it is integrated into an active 

learning activity. The authors argued that for 

visualisation to have a significant impact, two key 

components must work in tandem: the enhancement of 

learning with visualisation and the successful integration 

of the visualisation tools in the classroom. Alicioglu and 

Sun (2022) empirically validated the pedagogical value 

of visualisation techniques such as XAI for enhancing 

comprehension of machine learning models. Their 

research demonstrated that visual explanations 

significantly improve model interpretability by 

presenting complex algorithmic behaviours and 

prediction rationales in more accessible formats. 

Furthermore, the study conducted a comparative analysis 

of student engagement patterns, revealing a strong 

preference for blended learning approaches that 

incorporate visualisation tools over traditional lecture-

based instruction in deep learning curricula. Schultze et 

al. (2020) established that visualisation-based learning 

applications reduce the cognitive barriers to deep 

learning. Their research argued that such tools enable 

novice learners to develop conceptual understanding of 

model behaviours and architectural principles prior to 

attaining programming proficiency, thereby creating a 

more accessible entry point to the field.  

 

3. Blended Learning Framework 

 

We developed a tripartite blended learning 

framework comprising: 

(1) Asynchronous video lectures establishing 

theoretical foundations, 

(2) Synchronous in-class group discussions to deepen 

conceptual engagement, and 

(3) Class activity such as lab sessions featuring 

guided experimentation. 
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This scaffolded approach progresses from knowledge 

acquisition to applied practice, enabling learners to 

systematically transition from passive reception to active 

learners of deep learning systems. A sample learning plan 

is shown in Table 1 below. 

 

 

Table 1: Sample Learning Plan for Week 6 and week 7 

 
Week  

(L/T/P) 

Topic Pre-class In-class activity and group 

discussion 

Closing/Post-

Class 

Remarks 

6 Deep 

Learning 
Methods 

30 mins: 

A. Task: Watch curated videos + 
guided reading. 

 

1. Gen AI/CNN Video: 
Google Cloud Tech. (2023, 

September 12). *What is 

generative AI?* [Video]. 
YouTube. 

https://youtu.be/xA5Hrn2DNbk   

2. StatQuest with Josh Starmer. 
(2021, July 10). *RNN and 

LSTM explained* [Video]. 

YouTube. 
https://youtu.be/hZVblg1h4xM   

 

B. Please experiment with  
1. TensorFlow Playground. 

(2023). *Interactive deep learning 

tool*. 
https://playground.tensorflow.org 

2. exploRNN Team. (2022). 

*exploRNN: Interactive 
visualisation tool for recurrent 

neural networks*. exploRNN. 

https://explornn.github.io   

50 mins: 

1. Discuss the advanced features of 
Deep Neural Networks, such as 

CNN 

2. What are the shortcomings of a 
RNN? 

3. How does LSTM overcome these 

shortcomings? 
 

10 mins: 

Break 
 

50 mins: 

1. Familiarization with exploRNN 
at 

https://papersubmissions42.github.i

o/exploRNN/ 
2. Experiment with sequential input 

and non-sequential output (many-to-

one), such as next element 
prediction. Tasks with sequential 

input and sequential output (many-

to-many), such as translation. As 
well as tasks with non-sequential 

input and sequential output (one-to-

many), such as image captioning. 

30 mins: 

1. Groups discuss 
and submit 

answers for ALL 

questions in the 
Separate 

worksheet given. 

 
2. Groups present 

answers for 3 

selected 
interesting points 

to the class. 

Tutors: 

Review of deep 
learning methods, 

review questions, 

attendance sheet, 
spend a few minutes 

answering questions 

and clarifying 
misconceptions. 

 

Students: 
Work on the separate 

worksheet given 

 
Tutors: 

Interacts with an open 

Inquiry question in 
small groups or help 

clarify concepts. 

7 CNN, 

XAI 

(LIME, 
SHAP) 

30 mins 

Task: Watch curated videos + 

guided reading. 
 

Resources: 

Video 1: "Introduction to LIME 
for Explainable AI" (StatQuest 

LIME tutorial) 

 
Video 2: "SHAP Values for Model 

Interpretability" (SHAP library 

demo) 

50 mins: 

1.How do LIME and SHAP 

approximate model behavior 
differently? 

2.What are the limitations of these 

methods for CNNs? 
3.Why is interpretability critical in 

real-world AI applications? 

 
10 mins: 

Break 

 
50 mins: 

Hands-on XAI Visualisation with 

CNNs 
Tools: Python notebooks with pre-

trained CNN (e.g., ResNet) + LIME 

or SHAP. 
Dataset: CIFAR-10 or MNIST for 

simplicity. 

30 mins: 

1. Groups discuss 

and submit 
answers for ALL 

questions in the 

Separate 
worksheet given. 

 

2. Groups present 
answers for 3 

selected 

interesting points 
to the class. 

Tutors: 

Review of last week’s 

lesson, 
review questions, 

attendance sheet, 

spend a few minutes 
answering questions 

and clarifying 

misconceptions. 
 

Students: 

Work on the separate 
worksheet given 

 

Tutors: 
Interacts with an open 

Inquiry question in 

small groups or help 
clarify concepts. 

  

4. Methodology 

 

This study is a collaborative initiative between 

Nanyang Polytechnic (NYP) and the University of 

Glasgow (UofG) to facilitate education research. By 

integrating pedagogical frameworks and resources from 

both institutions, this partnership enables the 

examination of student engagement in AI education 

leveraging two complementary academic modules. The 

first module, Intelligent Services Implementation, is 

offered as part of a Specialist Diploma program at NYP, 

while the second, Machine Learning, is an undergraduate 

subject within the Computing Science degree program 

jointly administered by UofG and the Singapore Institute 

of Technology.  

Firstly, visualisation tools, like Tensorflow 

Playground, explorRNN and XAI techniques like LIME 

and SHAP, were integrated into a blended learning 

environment. This implementation followed a structured 

pedagogical framework as operationalized in our sample 

learning plan (see Table 1) where the tools were 

strategically deployed to facilitate active learning and 

promote deeper engagement with AI concepts in 

different ways (e.g. hands-on, discussion, and 

presentation). Secondly, a quasi-experimental 

comparative design was implemented to systematically 

evaluate differences in learning engagement compared 

with traditional lecture-based instruction. Finally, 

following the instructional interventions, a structured 

survey was administered to assess students' perceived 

engagement and satisfaction with each pedagogical 

https://playground.tensorflow.org/
https://papersubmissions42.github.io/exploRNN/
https://papersubmissions42.github.io/exploRNN/
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approach. We adopted a mixed-methods approach, 

integrating both quantitative and qualitative analyses to 

triangulate findings and enhance validity. The survey 

utilized a 5-point Likert scale survey (1 = Strongly 

Disagree to 5 = Strongly Agree) to assess key dimensions 

of the learning experience, while parallel qualitative data 

were collected through open-ended survey responses. We 

then analysed the performance metrics - including mean 

satisfaction scores. To assess statistical significance, we 

used independent samples t-tests compared mean 

satisfaction scores between the instructional approaches. 

Survey open-ended responses were thematically coded to 

identify patterns in student experiences, challenges, and 

preferences. Finally, we use a repeated-measures design 

method where the cohort size, N=34, was exposed to both 

approaches with the schedule as shown in Table 2. 

 

Table 2: Repeated-Measures Design 

 
Group Instructions Week 

Control 

Group 

Traditional lecture-based 

instruction and labs (no AI tools 

or interactive components) 

Phase 1 

(Week 1-

5) 

Intervention 

Group 

Blended learning with AI 

visualisation tools (video 

lectures, interactive labs, and 

discussion sessions) 

Phase 2 

(Week 6 – 

10) 

 

5. Survey Results and Discussion 

 

Table 3 presents the aggregated Likert-scale 

responses (N=34) for each quantitative survey item, 

comparing student perceptions across several key 

dimensions of the learning experience. 

 

Table 3: Sample Survey Questions Assessing Key Dimensions of the Student’s Learning Experience 

 

 
 

 

A. Overall Learning Engagement with Blended 

Learning versus Traditional Learning 

From the responses to survey item 1, quantitative 

analysis revealed a preference for the AI-enhanced 

blended learning approach (M=3.90, SD=0.94) over 

traditional instruction (M=3.79, SD=0.84), as measured 

on a 5-point Likert scale. The slight preference for AI-

enhanced blended learning (Δ=0.17 on a 5-point scale), 

with t(33)=2.26, p=0.030 (two-tailed), is statistically 

significant. The observed effect size, quantified by 

Cohen's d = 0.39 (95% CI [0.04, 0.74]), suggests a small-

to-medium practical effect. The findings were also 

substantiated by three recurring themes in qualitative 

feedback:  

 

• Flexibility and Accessibility: Students valued 

asynchronous access to materials (e.g., "Being 

able to learn at my own pace reduced stress and 

improved comprehension"). 

 

• Reinforcement Through Multimodality: 

Participants reported enhanced understanding 

through complementary online/in-person 

components (e.g., "The combination helped 

solidify concepts—I could revisit difficult topics 

after class"). 

 

• Improved Workload Management: Many 

highlighted better study-life balance (e.g., 

"Online resources allowed me to efficiently 

integrate coursework with other commitments"). 

 

The student critiques of the traditional approach, 

however, revealed three key thematic concerns: 

 

3.94

3.77

3.88

3.94

3.59

3.85

0.94

0.86

1.11

0.91

1.14

1.09

0.00 0.50 1.00 1.50 2.00 2.50 3.00 3.50 4.00 4.50

1. How would you rate your overall learning
experience with the blending learning approach?

2. How would you rate your overall learning
experience with the traditional (lecture and lab)…

3. How interactive were the lab sessions using the
Tensorflow playground and exploRNN?

4. How easy was it to use the Tensorflow playground?

5. How easy was it to use exploRNN?

6. How helpful were the Explainable AI tools (LIME
and Shap) in understanding deep learning concepts?

Sample Survey Questions Assessing Key Dimensions of Learning Experience (N=34)

Mean SD
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• Cognitive Overload: "The traditional lectures 

were informative, but sometimes I felt 

overwhelmed with the amount of information 

presented in a single session." 

 

• Structural Rigidity: "I appreciate the structure of 

traditional classes, but incorporating online 

elements could make learning more dynamic." 

 

• Pacing Challenges: "While I valued face-to-face 

interaction, I struggled to keep up with the 

lecture pace." 

 

These findings substantiate the pedagogical 

constraints of purely traditional instruction, while 

highlighting student demand for the multimodal 

flexibility that our AI-enhanced blended framework 

provides. 

 

B. Interactivity of AI Visualisation Tools 

Survey item 2 on interactivity of AI visualisation 

tools utilizing TensorFlow Playground and exploRNN 

demonstrated strong pedagogical efficacy, receiving an 

average interactivity rating of 3.88 (SD = 1.11) on a 5-

point Likert scale. Qualitative analysis revealed three 

dominant themes in student evaluations: 

 

• Cognitive Accessibility: "TensorFlow 

Playground demystified the black box of neural 

networks, making the learning process intuitive 

and seeing how adjusting learning rates or 

activation functions affected the model was 

fascinating."  

 

• Theory-Practice Integration: "The interactive 

labs allowed me to apply theoretical knowledge 

in a practical setting, enhancing my learning 

experience."  

 

• Engagement and Motivation: "The lab sessions 

were the highlight of the course—engaging and 

applicable to real-world scenarios. It made 

learning neural networks fun - I grasped 

complex concepts without math anxiety." 

 

These findings collectively suggest that interactive AI 

visualisation tools can effectively bridge the theory-

practice gap in deep learning education while 

maintaining high learner engagement.  

 

Nonetheless, the comparative analysis revealed a 

statistically significant difference in perceived 

interactivity between the two visualisation tools. 

TensorFlow Playground (Survey Item 3) received higher 

interactivity ratings (M = 3.94, SD = 0.91) compared to 

exploRNN (Survey Item 4; M = 3.59, SD = 1.14), with 

this difference being highly significant (t(33) = 3.78, p 

= .0006, two-tailed, d = 0.65). The lower scores for 

exploRNN indicate a need for enhanced scaffolding, 

particularly for recurrent neural network concepts which 

are inherently more complex than feedforward 

architectures. Overall, the integration of exploRNN into 

the blended learning framework proved instrumental in 

demystifying RNNs, as evidenced by student feedback. 

Thematic analysis revealed three key pedagogical 

benefits: 

 

• Visualisation of Sequential Data Processing: 

"exploRNN provided a clear visualisation of 

how RNNs process sequences, making hidden 

states and backpropagation through time more 

intuitive." 

 

• Comparative Analysis of RNN Architectures: "I 

could experiment with LSTMs and GRUs, 

seeing how they performed on different tasks—

this hands-on experience was invaluable." 

 

• Reduction of Cognitive Load in Complex 

Topics: "The tool made sequential data handling 

less abstract—visualizing information flow was 

a game-changer." 

 

 

C. Helpfulness of XAI Tools 

The survey results (Survey Item 6) indicate that XAI 

tools (LIME and SHAP) were perceived as helpful (M = 

3.85, SD = 1.09), though slightly lower than TensorFlow 

Playground (M = 3.94) but higher than exploRNN (M = 

3.59).  This suggests moderate-to-high utility in aiding 

conceptual understanding while also highlighting the 

need for improvement in connecting theoretical concepts 

to real-world applications. The findings were also 

substantiated by three recurring themes in qualitative 

feedback:  

 

• Demystification of AI decision-making 

processes: "Provides clear visualisations that 

highlight feature contributions." 

 

• Tools as gateways to deeper engagement: "Will 

help me further explore to understand AI 

modelling better." 

 

• Connection between tool outputs and real-world 

problem-solving: "The tool is simple to use but 

needs time to relate to real-world challenges I 

am expected to solve." 

 

 

6. Conclusions 

 

This study, through rigorous quantitative and 

qualitative analyses, revealed a statistically significant 

student preference for the AI within a blended learning 

approach over traditional instruction, with a small-to-

medium practical effect size. It underscored the 

pedagogical value of integrating AI visualisation tools in 

the curriculum to enhance student learning experiences.  

 

The key findings from this study are as follows: 
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1. Enhanced Engagement: Students demonstrated 

better engagement when using tools and 

experiences that reduce unnecessary cognitive 

load and make complex concepts intuitively 

graspable. This is particularly beneficial for 

learners new to AI education, as visualisation 

tools help lower barriers to comprehension and 

reduce intimidation, which is often caused by the 

mathematical formalism (e.g., backpropagation 

equations) prevalent in traditional AI/ML 

instruction. 

 

2. Bridging Theory and Practice: Interactive labs 

effectively bridged the gap between abstract 

theory and applied skills. They demystified the 

AI decision-making process by providing visuals 

that highlight feature contributions through 

hands-on experimentation. 

 

3. Increased Intrinsic Motivation: The dynamic, 

visual nature of the tools increased intrinsic 

motivation, transforming challenging topics into 

engaging and enjoyable learning experiences. 

 

While the study measured engagement and 

motivation shortly after the intervention, it may not 

capture long-term retention of knowledge, sustained 

interest in AI, or the development of deeper conceptual 

understanding over time. Future research should explore 

long-term knowledge retention and scalability of these 

tools across diverse educational contexts.  

Nevertheless, this study strongly advocates for the 

continued integration of interactive AI visualisation tools 

in AI curricula to foster deeper, more accessible, and 

engaging learning experiences. 
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