

ISATE2025

September 9-12, 2025

A Programming Board Game considered in Real Programming Language

Koki Watanabea, Shota Hayashia, Hayata Morib and Koji Tajima*c

a NIT, Gifu college, Advanced Course, Gifu, Japan

b NIT, Gifu college, Dept. of Electronic Control Engineering, Gifu, Japan
c NIT, Gifu college, Electrical and Information Engineering Course, Gifu, Japan

Koji Tajima (ktajima@gifu-nct.ac.jp)

This paper describes a card-based board game

developed for early elementary school students'

programming education. The game aims to enable

students to write in an actual programming language.

The game has the following three features. (1) The

game is designed for two players, and it makes players

want to learn by competing. (2) The program can be

developed simply by ordering the card. (3) The

completed card program can be written in block

programs, TypeScript, Java, Python, etc. We held a

class for eight elementary school students to use the

game we had created. We confirmed in this class the

importance for elementary school students to

understand the goal of developing program. The

game has a simple, easy-to-understand goal. Creating

a number larger than the opponent's by arranging the

cards is the simple goal and it is for students to

generate their own ideas. The implementation of their

ideas helps them to improve their motivation to learn.
Furthermore, we are developing a program that can

automatically make the program by taking pictures

of the cards of this game. We have now finished

recognizing cards from images with high accuracy,

and we plan to develop the code generation part in the

future.

Keywords: programming education, card game,

gamification, image recognition

Introduction

In 2020, Japan made programming education a

requirement for elementary schools. We need to think

about how to teach programming to elementary school

students. There are two phases to obtaining programming

skills. One is to learn to think logically, using logic such

as addition and repetition to solve problems. Another is

learning to write and describe languages such as C and

Java. Programming tools for education, such as Scratch

and MakeCode, focus mainly on the first. Block

programming is used in these software. The problem was

that while the students enjoyed creating logic, they could

not develop an actual program.

This paper proposes a programming learning material

that is easier to program than block programming, but is

easier to convert to actual code. The proposed material

is in the type of a card game, which will motivate students

to learn by challenging them to play the game. On the

other hand, this material is not designed for general-

purpose programming as much as block programming.

This material is designed to learn the logic focused on the

task of making large numbers with some functions. In

addition, this logic is easy to convert to the actual syntax

of programming languages.

Materials of Education

1. Summary of the game developed

We developed a card-based board game for

programming education for early elementary school

students, which aims to enable them to write in an actual

programming language. The game has the following

three features. (1) The game is designed for two players,

and it makes players want to learn by competing. (2) The

program can be developed simply by ordering the cards.

(3) The completed card program can be written in block

programs, TypeScript, Java, Python, etc.

Fig.1 shows the cards for the games that we

developed. In this game, the objective is to arrange the

order of cards to build a larger number than the

opponent’s. Players play three matches with a pre-

determined set of seven cards. The example in the figure

shows a match with three cards. The bottom player makes

5 by +1 + (+2) x 2 times. In this game, red cards are for

Fig.1 An example of the board game.

ISATE2025

September 9-12, 2025

normal addition operations, and green cards are for

repeats. On the other hand, the upper player makes 6 by

+1 +2 +3. The value of this light blue card changes its

effect depending on whether the opponent has a green

card or not. In this example, the opponent has a green

card, so it is +3. Therefore, the upper player wins this

match. The difference between our card game and

existing materials for learning programming is that we

directly include a programming processing element and

focus on numerical calculations based on the goal of

creating larger numbers. There are many card-based

programming games, such as Robot Turtles and

STEMON, in which players line up instructions to move

a specific object, leading the object to the goal along a

designated path. These programming games do not focus

on calculation directly, since the main point of these

games is to be enjoy from pre-school age children. On the

other hand, programming materials for post-school-aged

children are often based on block programming. These

games could be freely programmed, but had the

disadvantage that they had no fixed objectives. It is an

enjoyable learning experience for children with a clear

objective, such as upper elementary school students. As

a result, for younger children, the former had the

disadvantage of being too easy and the latter too difficult.
The proposed game we propose is positioned between

these two types of games. It is simple in its operation of

lining up cards, but it has a clear goal of calculating larger

numbers. It also allows children who have just learned

the four arithmetic operations to apply their knowledge

to the game. Moreover, it can be considered as replacing

the blocks in block programming with cards, and these

cards can be converted into the actual programming

language. In this way, this game can work as teaching

materials between block programming and authentic

programming language learning and can be used to help

beginners in programming learn the basics of

programming and a programming language.

2. The game cards and rules

Fig. 2 shows a summary of the cards used in this game.

In this game, each player has seven of these cards. This

combination of the cards is called the “deck”. We made

4 types of decks. Table 1 shows the cards in deck 1 and

4. Each deck has different characteristics, and the

contents that can be learned are different. We adjusted

any deck can win against all other decks with a good

algorithm. Because we are targeting beginning students,

we have decided to only focus on the simplest functions

of programming at this time. In the future, we plan to

increase the functions according to the level of learning.

There are three games, and the winner is the player

who wins two games. The first and second matches are

played with three cards chosen from seven cards; in the

second match, the cards used in the first match cannot be

used. The third match is played by selecting five cards

from seven. In this match, all the cards can be used. This

is strategic because a card unseen by the opponent can be

used.

This game can be introduced to second-grade

elementary school students because of the simple rule of

Table. 1 The card lint in the deck 1 and 4.
Card function

Red 1 add 1

Red 2 add 2

Red 3 add 3

Red 4 add 4

Red 5 double

Green Repeat 2 times

Blue 1 If your number is odd, double that

number.

Blue 2 If opponent has a blue card,

your number added 1 and double

your number.

Blue 3 If opponent has a blue card, all

other blue cards become zero, and

your number added 1.

Blue 4 If opponent has a green card, all

other green cards become zero,

and your number added 1.

Blue 5 If opponent has a green card, your

number added 3, otherwise zero

Blue 6 If opponent has a green card, the

next card after that card is zero.

Purple Change the rules for this match.

The one with the lowest number

wins.

making large numbers by calculation. Also, when

creating a program in an actual programming language,
there is no need for special functions, since it is sufficient

to define variables and add numbers. In addition, some

cards are an introduction to learning how to write looping

(repeating) and conditionals. The color of the card is

designed to identify its function of the card: addition is

red, looping is green, and conditional is blue.

3. The digitized method of the game

We considered a digitizing method to convert this

card game into a computer game. Play the game with a

computer, which could be automatically converted into a

programming language, and it automatically calculates

the execution results.

We consider the ability to freely remake the source

code essential to understanding the algorithms of

programming. For this reason, the code can change only

by changing the order of the cards in the electronic

Fig.2 Card list of developed game.

ISATE2025

September 9-12, 2025

version. When editing source code directly, this is

difficult for beginning students, who are unfamiliar with

keyboard usage, copying and pasting, etc.

There are two different methods to capture the

sequence of cards into the electronic version. The first is

to digitize the card game itself so that it can be played all

on a computer. The other method is to play the game with

cards, take a picture of the lined-up cards with a camera,

and analyse this image. In this project, we tried to

implement both methods.

The software, which can be played on a computer,

was created using Unity. This software is designed to be

played by two people on different computers and enable

them to communicate with each other. The

communication is carried out in real time. The library for

this communication used PUN2. PUN2 can synchronize

objects using the Cloud. In this case, the cards are kept as

network objects on the server and synchronously placed

as objects on both game screens.

The flow of the electronic version of the game is as

follows. (1) Register the project of the game on the PUN2

server and output the project. (2) Two players run the

output project. (3) The running projects automatically

connect to the server and display each other's network

objects and names. (4) Once the two players are

connected, the card selection screen appears. (5) After

both players have finished selecting their cards, the result

of the match is displayed. As there are three matches, the

card selection and display of the result are carried out 3

times.

Fig. 3 shows the card selection screen. This screen

places the cards that can be selected in the current match.

This screen is not synchronized over the network but

locally, as card selection is not done openly to the

opponents. The cards can be selected by mouse-clicking

on the object. When a card is clicked, the selected card

number is displayed in the “Selected Cards” section at the

Fig. 3 The card selection screen of the game.

Fig. 4 The match-up screen of the game.

bottom of the screen. To deselect a card, simply click on

it again. The newly selected card is added to the last of

the cards list already selected. When the player finishes

selecting the cards, pressing the “GO!” button allows.

Press this button, the application moves on to the match-

up screen.

Fig. 4 shows the match-up screen. When the screen

moves to the match screen, the player is connected to the

network again. Two players are connected to the network

and press the ‘Set’ button, both players' cards will open.

An asterisk is displayed on its side to make it easier to

identify. The player processes the cards in order from left

to right by pressing the space key, and the calculation

results are displayed. Processes such as turning over an

opponent's cards are done before this calculation. Wins

and losses are stored locally, and the end result is

displayed after three matches.

Method of Experimental

For the evaluation experiment, we tested the

understanding test in an IT course for elementary school

children and checked the accuracy of the image

recognition. The reason for experimenting with image

recognition is that we plan to develop a software system

that generates a program corresponding to the card

contents and calculates the score automatically by photo

images of the board. This system shows how to write

code; it helps beginners in programming to understand

how to express corresponding rules of the game. Students

could develop logical thinking and programming skills,

in this process.

(1) The IT learning class for primary school

This game was used in a local IT class, and we

confirmed the effect of this game for elementary school

students. We invited elementary school students to

participate in this course. As a result, eight students

attended the learning class: one 4th year student, three 5th

year students, three 6th year students in elementary

school and one 1st year junior high school student. The

title of this class is “Learning Programming and IoT via

competitive games” (“対戦型ゲームで学ぶプログラ

ミングと IoT” in Japanese). After learning about

programming development using our proposed card

game, the students will develop a programme to obtain

temperature sensor and share the temperature using the

IoT device Obniz. The value obtained from the sensor is

0 to 1,024. It cannot be used as temperature as it is, so the

programming technique learned in the card game is used

to convert the value obtained from the sensor to

temperature there. At the end of the course, we surveyed

the level of enjoyment and programming difficulty by

questionnaire. Free-text answers were also collected to

obtain information on what was interesting and difficult.

(2) The Image recognition accuracy

 In the image recognition experiment, the cards are

lined up and captured by a camera. We confirm the

accuracy with which the cards can be recognised from

the images captured. The cards for identification in this

case are the 13 types of cards shown in Fig. 2. This

ISATE2025

September 9-12, 2025

Table. 2 Accuracy of feature matching
Card Number

of trials
Correct Accuracy

Red 1 39 39 100%

Red 2 26 26 100%

Red 3 28 28 100%

Red 4 30 30 100%

Red 5 42 42 100%

Green 30 30 100%

Blue 1 15 15 100%

Blue 2 15 15 100%

Blue 3 15 14 93.3%

Blue 4 15 14 93.3%

Blue 5 15 15 100%

Blue 6 15 15 100%

Purple 15 15 100%

time, the cards were printed from images created on a PC,

so that all accurate comparison images existed. We

performed card identification by feature matching

between the comparison image and the captured image.

It is necessary to cut out the cards from the line-up

into individual card images. The cut-out position was

fixed for this by placing the cards on the play mat.

For each card comparison image and cut-out image,

we extract local features using the SIFT algorithm. For

matching between the extracted features, we used

FLANN. For feature matching, the cut-out images are

matched with all comparison images. Then we identified

the image with the highest degree of matching. The

comparison image with the highest degree of agreement

is then selected as the recognition result. We prepared 30

images like Fig. 1 for the evaluation experiment; 10 cards

were arranged in each image, so the total number of cards

was 300.

Results and Discussion

In a questionnaire-based evaluation, all students

selected 5 out of 5 for enjoyment, which indicates that

they enjoyed learning programming using games. As for

the level of difficulty, four students answered easy, three

answered standard and one answered difficult. In the

free-text comments, the students again noted that the

game helped them learn in an enjoyable way, and also

wanted to develop a more complex programme with a

programming language. For the electronic application,

the students tried the paper-based card game and

understood the rules before using it. There were no

problems of difficulty in operating this application if the

students had understood the game rules before using it.

Also, we observed that many students showed a strong

interest in the way the game's controlling code works.
However, since we could not collect enough younger

elementary school students, we are planning to try the

experiment again at a different location.

The results of the image recognition experiment are

shown in Table 2. The mouse card is Red 1, and the rabbit

card is Red 2. Out of the 30 images prepared for the

experiment, the number of trials for Red 1 and Red 5 are

over 30, This is because two of the same cards can appear

in one deck.

The results show that more than 90% of all cards were

identified, although Blue 3 and Blue 4 were misidentified

once each. This is due to the very similar images and the

light conditions that made it difficult to see some of the

images.

Conclusions

This paper describes a programming education

material for early elementary school students. This

material is a card-based board game that line up cards

with a process written on them and make a number

greater than their opponent's. There are 13 types of

processes, representing addition, multiplication, looping,

and conditionals. A deck is a set made from seven of

these cards. The player selects from 3 or 5 cards from the

deck to make the program with their own ideas.

We used in a local IT class, and we confirmed the

effect of this game for elementary school students. At the

end of the class, we surveyed the level of enjoyment and

programming difficulty by questionnaire. The results

shows all students enjoyed learning programming using

games. As for the level of difficulty, half of the students

responded that it was easy. The age of the elementary

school students who attended this class was a little older

than the estimated age. Therefore, we will design that

allows for changing the difficulty level.

On the other hand, we also tried to digitalize this

game and to recognize the card images by photo. The

digitized software was also used in the course. The

application was easy to operate for elementary school

students. The recognition of cards was accurate, but in

this card set, there were two cards that were only different

colors, and there was a case of mistaking these two cards.

In the future, we plan to create a system to

automatically generate a program based on the

recognized cards and their order, and hold the class for

elementary school students again.

References

Mitchel, R., John, M., Andrés, M. H., Natalie, R., Evelyn,

E., Karen, B., Amon, M., Eric, R., Jay, S., Brian, S.,

Yasmin, K. (2009). Scratch: programming for all.

Communications of the ACM, Volume 52, Issue 11, pp

60 – 67.

Lowe, David G. (1999). Object recognition from local

scale-invariant features. Proceedings of the International

Conference on Computer Vision. Vol. 2. pp. 1150–1157.

Marius, M. and David G. Lowe (2009). Fast

Approximate Nearest Neighbors with Automatic

Algorithm Configuration. International Conference on

Computer Vision Theory and Application

VISSAPP'09, pp. 331-340.

