
 

ISATE2025  
September 9-12, 2025 

 
 

SURVEY OF GRID POINTS IN A SINGLE-DIGIT DOMAIN 
GENERATING SPECIAL ANGLES 

 
 

Masayoshi Sekiguchi* a 
 

a Natural Science Education, National Institute of Technology, Kisarazu College, Japan 
 

masa@kisarazu.ac.jp  
 
When asking for the angle between vectors, it is 
beneficial for students if the answer is simply a 
specific “special angle,” such as 𝝅 𝟔⁄ , 𝝅 𝟒⁄ , 𝝅 𝟑⁄ . The 
question becomes even better if the vectors are 
expressed using small integers. Based on this principle, 
a theoretical survey for grid points in 2D space and a 
numerical survey in 3D space were conducted, 
focusing especially on the “single-digit domain.” 

The theoretical exploration in 2D was successfully 
completed and yielded a general conclusion: there 
exists a two-parameter family of integer vectors 
forming an angle of 𝝅 𝟒⁄ , while no integer-coordinate 
vectors form 𝝅 𝟔⁄  or 𝝅 𝟑⁄ . Exactly 10 distinct pairs 
realizing 𝝅 𝟒⁄  were identified, in the single-digit 
domain. The numerical exploration in 3D detected 28 
pairs of vectors within the single-digit domain. A total 
of 38 “primary minimal pairs” were found. To 
complement and extend the primary minimal pairs, 
two theoretical tools were introduced: 
“complementary integer adjustment” (CIA) and 
“rational orthogonal transformation” (ROT). The 
outcomes obtained via CIA and ROT lie outside the 
single-digit domain with one overlapped. As a 
byproduct of CIA and ROT, additional 48 pairs of 
vectors just outside the single-digit domain were also 
found, forming special angles. 

The results of this study provide a useful resource 
for educators designing class materials and exam 
questions related to vector calculations. They enable 
the creation of exercises where students can focus on 
fundamental vector operations without 
computational distractions. Furthermore, the 
theoretical approach in the 2D case suggests the 
possibility of developing advanced questions that ask 
students to prove the nonexistence of integer vector 
pairs forming 𝝅 𝟏𝟐⁄ , 𝝅 𝟖⁄ , 𝝅 𝟓⁄ , and related angles. 

Extending this analysis to 3D introduces 
additional mathematical challenges, as the problem 
reduces to solving a fourth-degree algebraic equation 
with six unknown integers. While a complete 
theoretical classification remains open, this work 
suggests possible deeper connections to number 
theory. 

 Future work includes implementing the proposed 
question design in classroom settings, especially in 
linear algebra courses, to evaluate its impact on 
students’ understanding. 

Keywords: linear algebra, dot product, angle between 
integer vectors 
 

Motivation 
 

The author teaches mathematics at a technological 
college in Japan, covering subjects such as linear algebra, 
calculus, and engineering mathematics. He frequently 
designs quizzes and problems for his students, adhering 
to the principle: 

Principle: Simple questions with simple answers 
encourage students to learn more. 

He believes that well-structured problems should have 
clear and straightforward solutions, avoiding 
unnecessary complexity. This approach allows students 
to focus on fundamental mathematical concepts without 
being hindered by excessive computational difficulties. 

A typical example involving vectors in linear algebra 
is: 

Q1: Find the angle between two vectors ABሬሬሬሬሬ⃗  and ACሬሬሬሬ⃗  
for given points A, B, and C. 

If the points are chosen arbitrarily, the answer might 
involve inverse trigonometric functions, such as 

cos−1
2

3
, 

which can be cumbersome for students to evaluate. 
Instead, angles corresponding to 

cos−1
√3

2
, cos−1

√2

2
, cos−1

1

2
 

are more intuitive, as they correspond to 𝜋 6 ⁄ , 𝜋 4 ⁄ , 
𝜋 3 ⁄ , respectively. The author refers to these as “special 
angles.” 

Q1 is a simple yet effective problem, particularly 
when the answer is a special angle. Moreover, the 
question becomes more accessible if A, B, and C are 
located at grid points in a coordinate system. In line with 
the Principle, the author prefers using single-digit 
numbers in questions. In this article, the term "single-
digit domain" refers to the region defined by integer pairs 
(𝑚, 𝑛) in 2D space or triples (𝑙, 𝑚, 𝑛) in 3D space, where 
0 ≤ 𝑙, 𝑚, 𝑛 ≤ 9 and 𝑙, 𝑚, and 𝑛 are mutually prime. We 
consider 𝒖 = (𝑚, 𝑛) or 𝒖 = (𝑙, 𝑚, 𝑛) as an input within 
this domain, and aim to find a corresponding 𝒗 within the 
same region. The same approach is applied to the 3D case. 
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Motivated by this, the author conducted a survey of 
grid points in 2D and 3D spaces that generate special 
angles. Initially, he consulted an AI chatbot to explore 
potential grid points. He then used the chatbot to assist in 
writing a Python script for systematic exploration. 
Finally, he attempted a theoretical approach to solving 
the problem himself. While the 2D case proved relatively 
straightforward, the 3D case involved significant 
mathematical challenges. Since deriving a general but 
highly complex solution would not be suitable for 
educational purposes, a numerical survey of grid points 
was considered the appropriate approach. This paper 
presents the numerical findings for the 3D case, along 
with a discussion of potential theoretical methods. 
 

Some Notations and Preparation 
 
Suppose three points A, B, and C with assuming 

ABሬሬሬሬሬ⃗ = 𝒖  and ACሬሬሬሬሬ⃗ = 𝒗.  
We introduce a notation A(𝒖 ,𝒗) to indicate the angle 
between 𝒖  and 𝒗 , especially for the 2D case 𝒖 =
(𝑢ଵ, 𝑢ଶ)் and 𝒗 = (𝑣ଵ, 𝑣ଶ)்: 

𝐴(𝒖, 𝒗) = 𝐴 ቀ
𝑢ଵ 𝑣ଵ

𝑢ଶ 𝑣ଶ
ቁ, 

and for the 3D case 𝒖 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ)் and 𝒗 =
(𝑣ଵ, 𝑣ଶ, 𝑣ଷ)்: 

𝐴(𝒖, 𝒗) = 𝐴 ൭

𝑢ଵ 𝑣ଵ

𝑢ଶ 𝑣ଶ

𝑢ଷ 𝑣ଷ

൱. 

We regard 𝒖 as an input with letting 𝑢ଵ = 𝑚 and 𝑢ଶ = 𝑛, 
and 𝒗 as an output to satisfy a relation: 

𝐴(𝒖, 𝒗) = 𝜃 

where 𝜃 = ∠BAC will be a special angle. 
Swapping the rows does not change the angle: 

 
𝐴 ቀ

𝑢ଶ 𝑣ଶ

𝑢ଵ 𝑣ଵ
ቁ = 𝐴 ቀ

𝑢ଵ 𝑣ଵ

𝑢ଶ 𝑣ଶ
ቁ, (1) 

or 

𝐴 ൭

𝑢ଶ 𝑣ଶ

𝑢ଷ 𝑣ଷ

𝑢ଵ 𝑣ଵ

൱ = 𝐴 ൭

𝑢ଷ 𝑣ଷ

𝑢ଵ 𝑣ଵ

𝑢ଶ 𝑣ଶ

൱ = ⋯ = 𝐴 ൭

𝑢ଵ 𝑣ଵ

𝑢ଶ 𝑣ଶ

𝑢ଷ 𝑣ଷ

൱, (2) 

Thus, we can skip checking the triangular half of grid 
points using this symmetry with respect to a line 𝑦 = 𝑥. 
Hence, we redefine the “2D single-digit domain” as 

𝐷ଶ ≝ {(𝑚, 𝑛)𝜖ℤଶ | 0 ≤ 𝑚 ≤ 𝑛 ≤ 9} 

and “3D single-digit domain” as 

𝐷ଷ ≝ {(𝑙, 𝑚, 𝑛)𝜖ℤଷ | 0 ≤ 𝑙 ≤ 𝑚 ≤ 𝑛 ≤ 9} 

The following properties are trivial if 𝑎, 𝑏 > 0: 
 

𝐴(𝑎𝒖, 𝒗) = 𝐴(𝒖, 𝑏𝒗) = 𝐴(𝒖, 𝒗) (3) 

for which we assume that coordinates of 𝒖 or 𝒗 should 
be mutually prime, and 

 𝐴(𝒗, 𝒖) = 𝐴(𝒖, 𝒗) (4) 

for which we can skip 𝒖 if it is equivalent with a 
previously found 𝒗. 
 

Theoretical Results in 𝑫𝟐 
 

Suppose ABሬሬሬሬሬ⃗ = 𝒖 = (𝑚, 𝑛) and  ACሬሬሬሬሬ⃗ = 𝒗 = (𝑣ଵ, 𝑣ଶ) in 
𝐷ଶ with 𝜃 = ∠BAC∈ [0, 𝜋]. By combining two formulae 

𝒖 ∙ 𝒗 = ‖𝒖‖‖𝒗‖ cos 𝜃 
and 

‖𝒖 × 𝒗‖ = ‖𝒖‖‖𝒗‖ sin 𝜃, 
we find 

tan 𝜃 =
‖𝒖 × 𝒗‖

𝒖 ∙ 𝒗
=

|𝑚𝑣ଶ − 𝑛𝑣ଵ|

𝑚𝑣ଵ + 𝑛𝑣ଶ

 

Let 𝑡 = tan 𝜃 , then find ±𝑡(𝑚𝑣ଵ + 𝑛𝑣ଶ) = 𝑚𝑣ଶ −
𝑛𝑣ଵ, which leads to 

 𝑣ଶ

𝑣ଵ

=
𝑛 ± 𝑡𝑚

𝑚 ∓ 𝑡𝑛
 (5) 

 

Proposition: No grid points in a 2D space form an 
angle 𝜋 3⁄  and 𝜋 6⁄ . 

proof: The angle 𝜃 = 𝜋 3⁄ , i.e., 𝑡 = √3 derives 

𝑣ଶ

𝑣ଵ

=
𝑛 ± √3 𝑚

𝑚 ∓ √3 𝑛
=

4𝑚𝑛 ± √3(𝑚ଶ + 𝑛ଶ)

𝑚ଶ − 3𝑛ଶ
 

which has no integer solutions of 𝑣ଵ and 𝑣ଵ because 
𝑚ଶ + 𝑛ଶ ≠ 0. Thus, we conclude that no grid point 
triples form an angle 𝜃 = 𝜋 3⁄ . 
Similarly, no triples of grid points to form 𝜃 = 𝜋 6⁄  
because 𝑡 = 1 √3⁄  in (5) leads to 

𝑣ଶ

𝑣ଵ

=
√3 𝑛 ± 𝑚

√3 𝑚 ∓ 𝑛
=

4𝑚𝑛 ± √3(𝑚ଶ + 𝑛ଶ)

3𝑚ଶ − 𝑛ଶ
 

 ∎ 
 
Contrarily, the angle 𝜃 = 𝜋 4⁄  can be formed by 10 pairs 
of (𝒖, 𝒗) in 𝐷ଶ. In the case, we find 𝑡 = 1, leading to 

𝑣ଶ

𝑣ଵ

=
𝑛 ± 𝑚

𝑚 ∓ 𝑛
=

𝑚 + 𝑛

𝑚 − 𝑛
  or  

𝑛 − 𝑚

𝑚 + 𝑛
 

Under the assumption 𝑚 ≤ 𝑛 in 𝐷ଶ, we adopt the second 
form in our survey: 

 𝑣ଶ

𝑣ଵ

=
𝑛 − 𝑚

𝑚 + 𝑛
 (6) 

Furthermore, the ratio 𝑣ଵ: 𝑣ଶ  should also be in its 
simplest form, just like 𝑚: 𝑛. 

We begin the survey in ascending order of 𝑚 and 𝑛 
within the upper triangular region of Table 1 excluding 
𝑚 = 𝑛 = 0. The process follows these steps: 
1. Skip a grid point (𝑚′, 𝑛′) if 𝑚′ 𝑛′⁄  is equal to a 

previously obtained value of 𝑚 𝑛⁄  
     (yellow cells in Table 1) 

2. Skip a grid point (𝑚′, 𝑛′) if ቀ𝑚′ 𝑚ᇱ + 𝑛′
𝑛′ 𝑛ᇱ − 𝑚′

ቁ is 

equivalent to a previously obtained matrix after 
swapping rows or columns. 

(green cells in Table 1) 
3. Skip a grid point (𝑚′, 𝑛′) if 𝑚ᇱ > 9 or 𝑛ᇱ > 9 after 

division by GCD(𝑚′, 𝑛′). 
(orange cells in Table 1) 
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Table 1: Checking process of grid points in 𝐷ଶ 

 
After reduction of the domain for survey, the minimal set 

of pairs ቀ
𝑚 𝑚 + 𝑛
𝑛 𝑛 − 𝑚

ቁ in the matrix form are listed below. 

Result 1: Minimal pairs of 2D vectors forming 𝜋 4⁄  in 
the single-digit domain. The first and second columns 
indicate 𝒖 and 𝒗, respectively. 

ቀ
0 1
1 1

ቁ , ቀ
1 3
2 1

ቁ , ቀ
1 5
4 3

ቁ , ቀ
1 3
5 2

ቁ , ቀ
1 7
6 5

ቁ, 

ቀ
1 4
7 3

ቁ , ቀ
1 9
8 7

ቁ , ቀ
1 5
9 4

ቁ , ቀ
2 7
5 3

ቁ , ቀ
2 9
7 5

ቁ. 

These 10 pairs of 2D vectors are referred to as “primary 
minimal pairs,” representing the simplest and most 
fundamental configurations that generate a special angle 
within the single-digit domain. Other than the special 
angles defined here, there is the other easy-to-handle 
angle, 3𝜋 4⁄ , which is supplementary to 𝜋 4⁄ . Since this 
is an obtuse angle lying outside 𝐷ଶ, it cannot be found 
through the current approach. However, it can be 
obtained by modifying the data from Result 1. For 
example, 𝒖 = (2,7)  and −𝒗 = (−9, −5)  form 3𝜋 4⁄ , 
because 𝒖 and 𝒗 form 𝜋 4⁄ . 
 

A byproduct of the Proposition 
 

Proposition derives an interesting consequence: 

Corollary: No grid points in a 2D space form an angle 
of 𝜋 12⁄ , 5𝜋 12⁄ , 𝜋 8⁄ , 3𝜋 8⁄ , 𝜋 5⁄ , 2𝜋 5⁄ . 

The proof makes for good exercise for advanced students, 
as it follows a similar approach to that in Proposition, 
given the following identities as a starting point: 

tan
𝜋

12
= 2 − √3, tan

5𝜋

12
= 2 + √3, 

tan
𝜋

8
= √2 − 1, tan

3𝜋

8
= √2 + 1, 

cos
𝜋

5
=

√5 + 1

4
, cos

2𝜋

5
=

√5 − 1

4
. 

In fact, proving the irrationality of √3 and √5 as well as 
√2, is not particularly difficult. 
 

Preparation for the Numerical Survey in 𝑫𝟑 
 

Suppose ABሬሬሬሬሬ⃗ = 𝒖 = (𝑢ଵ, 𝑢ଶ, 𝑢ଷ)  and ACሬሬሬሬሬ⃗ = 𝒗 =
(𝑣ଵ, 𝑣ଶ, 𝑣ଷ) . Assume that 𝒖  belongs to 𝐷ଷ  and seek 𝒗 
within 𝐷ଷ. Let 𝛾 = cos ∠BAC, then the relation 

 (𝒖 ∙ 𝒗)ଶ = 𝛾ଶ‖𝒖‖ଶ‖𝒗‖ଶ, (7) 

where 𝒖 ∙ 𝒗 = 𝑢ଵ𝑣ଵ + 𝑢ଶ𝑣ଶ + 𝑢ଷ𝑣ଷ, ‖𝒖‖ଶ = 𝑢ଵ
ଶ + 𝑢ଶ

ଶ +
𝑢ଷ

ଶ,  and ‖𝒗‖ଶ = 𝑣ଵ
ଶ + 𝑣ଶ

ଶ + 𝑣ଷ
ଶ . Thus, this leads to the 

following problem: 

Q2: Find 𝒖 and 𝒗 in 𝐷ଷ  satisfying the condition (7) 
with 𝛾ଶ = 1 4⁄ , 1 2⁄ , or 3 4⁄ . 

Condition (7) is a fourth order algebraic equation 
with six integer unknowns, placing it within the realm of 
number theory. A general, highly complex solution is 
unnecessary, as it would not be suitable for educational 
purposes. However, it is essential to obtain a fundamental 
set of vectors in 𝐷ଷ that satisfy equation (7). To achieve 
this, the author concludes that a numerical survey of grid 
points is the most appropriate approach. Although the 
number of points in 𝐷ଷ is large, it remains finite and is 
manageable using Python. 

Before conducting the survey, the initial conditions 
for 𝒖 are reduced according to properties (1) to (4). For 
the 3D case, the author planned a numerical survey. First, 
an AI chatbot was used to search for 𝐷ଷ for all valid pairs 
(𝒖, 𝒗), but it failed to find all the solutions. Next, the 
chatbot was used to assist in writing a Python script. 
 

Primary Minimal Pairs in 𝑫𝟑 
 

The Python script, refined with the assistance of an 
AI chatbot, successfully identified all possible grid points 
within 𝐷ଷ. However, it was less effective in reducing the 
output using properties (1) to (4). Therefore, the author 
manually reviewed and refined the results. The outcome 
is as follows: 

Result 2: 11 pairs of 3D vectors (𝒖, 𝒗) forming an 
angle of 𝜋 6⁄  within 𝐷ଷ. 

൭
0 1
1 1
1 2

൱ , ൭
0 1
1 2
1 7

൱ , ൭
0 1
1 1
7 2

൱ , ൭
1 3
1 8
2 5

൱, 

൭
1 4
1 5
2 3

൱ , ൭
1 2
1 5
4 5

൱ , ൭
1 4
2 1
3 5

൱ , ൭
1 4
2 3
7 5

൱, 

൭
1 5
3 2
4 7

൱ , ൭
1 3
7 2
8 5

൱ , ൭
2 5
5 3
5 4

൱. 

Result 3: 13 pairs of 3D vectors (𝒖, 𝒗) forming an 
angle of 𝜋 4⁄  within 𝐷ଷ. 

൭
0 3
0 4
1 5

൱ , ൭
0 2
1 1
1 2

൱ , ൭
0 4
1 1
1 8

൱ , ൭
0 6
1 1
1 9

൱ , ൭
0 5
1 7
2 4

൱, 

൭
0 2
1 1
7 2

൱ , ൭
0 6
1 6
7 7

൱ , ൭
0 5
3 3
4 4

൱ , ൭
1 4
1 7
4 4

൱, 

൭
1 7
3 8
4 2

൱ , ൭
1 5
4 4
8 3

൱ , ൭
1 4
5 5
8 2

൱ , ൭
2 8
3 5
6 3

൱. 

Result 4: 4 pairs of 3D vectors (𝒖, 𝒗)  forming an 
angle of 𝜋 3⁄  within 𝐷ଷ. 

൭
0 1
1 0
1 1

൱ , ൭
0 5
1 4
7 3

൱ , ൭
1 1
1 4
4 1

൱ , ൭
1 4
4 9
9 1

൱. 

These 28 pairs of 3D vectors are also referred to as 
“primary minimal pairs.” 
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Complementary Integer Adjustment 
 

Although the primary minimal pairs seem sufficient 
for educational purposes, the author introduces two 
theoretical approaches to systematically generate 
additional vector pairs and enrich the set: 
“complementary integer adjustment” (CIA) and “rational 
orthogonal transformation” (ROT). As a result, the 
outcomes obtained via CIA and ROT include some pairs 
lying outside the domain 𝐷ଷ. 

When given a special angle 𝜃 = 𝐴(𝒖, 𝒗),  its 
complementary angle 𝜋 2⁄ − 𝜃 can be found by rotating 
𝒗  around 𝒖  by 𝜋 2⁄ . However, this may result in an 
irrational expression. Instead, we assume 𝒘 = 𝑎𝒖 + 𝑏𝒗 
such that 𝒘 ⊥ 𝒗, ensuring 

 
𝐴(𝒖, 𝒘) =

𝜋

2
− 𝐴(𝒖, 𝒗). (8) 

A dot product of 𝒘 and 𝒗 leads to an indeterminate 
equation for 𝑎 and 𝑏: 𝑎𝒖 ∙ 𝒗 + 𝑏𝒗 ∙ 𝒗 = 0, satisfied with 
𝑎: 𝑏 = ‖𝒗‖ଶ: (−𝒖 ∙ 𝒗). Thus, we define 

 𝒘 ≝ ‖𝒗‖ଶ𝒖 − (𝒖 ∙ 𝒗)𝒗. (9) 

The vector 𝒘 given by (9) satisfies (8). Indeed, since 

and 

𝒘ଶ = (‖𝒗‖ଶ𝒖 − (𝒖 ∙ 𝒗)𝒗)ଶ = ‖𝒖‖ଶ‖𝒗‖ସ sinଶ 𝜃, 

we obtain 

cos{𝐴(𝒖, 𝒘)} = sin 𝜃 = cos ቀ
𝜋

2
− 𝜃ቁ, 

which confirms (8). 
Since 𝒖 and 𝒗 are integer vector, 𝒘 is also an integer 

vector. To ensure that the coordinates of 𝒘 be mutually 
prime, we divide 𝒘  by the greatest common divisor 
(GCD) of its coordinates: 

 
𝒘ᇱ =

1

𝜔
𝒘, (10) 

where 𝜔 is GCD of the coordinates of 𝒘. This process is 
referred to as a “complementary integer adjustment” 
(CIA). Thus, we say that 𝒘′ is the CIA of 𝒗 with respect 
to 𝒖. Similarly, we determine the CIA of 𝒖 with respect 
to 𝒗 by 𝒘෥ ≝ ‖𝒖‖ଶ𝒗 − (𝒖 ∙ 𝒗)𝒖; therefore, 

 
𝒘" =

1

𝜔′
𝒘෥  (11) 

where 𝜔′ is GCD of the coordinates of 𝒘෥ . 
 

Results by CIA outside 𝑫𝟑 
 

The CIA process was applied to 𝒗 (respectively, 𝒖) 
of Result 2 with respect to 𝒖  (respectively, 𝒗 ). The 
outcomes are presented as follows. 

Result 5: Pairs of 3D vectors forming an angle of 𝜋 3⁄  
and lying outside 𝐷ଷ , listed as 7 pairs of (𝒖, 𝒘′) 
followed by 8 pairs of (𝒗, 𝒘"). 

൭
0 −1
1 1
1 0

൱ , ൭
0 −1
1 4
1 −1

൱ , ൭
1 −7
7 8
8 1

൱ , ൭
1 0
1 −1
4 1

൱, 

൭
1 −2
2 3
3 1

൱ , ൭
1 −3
3 4
4 1

൱ , ൭
0 −5
1 −3
7 4

൱ ; 

൭
1 2
1 −1
2 1

൱ , ൭
1 2
2 −5
7 5

൱ , ൭
4 3
5 5
3 −4

൱ , ൭
2 1
5 7
5 −2

൱, 

൭
4 5
1 −4
5 1

൱ , ൭
3 5
2 −3
5 2

൱ , ൭
3 −1
8 9
5 −4

൱ , ൭
5 7
2 −5
7 2

൱. 

The CIA process was applied to 𝒗 (respectively, 𝒖) of 
Result 3 with respect to 𝒖  (respectively, 𝒗 ). The 
outcomes are presented as follows. 

Result 6: Pairs of 3D vectors forming an angle of 𝜋 4⁄  
and lying outside 𝐷ଷ, compiled into 9 pairs of  (𝒖, 𝒘′) 
and 5 pairs of (𝒗, 𝒘"), with 2 pairs omitted because 
they already appear in Result 3. 

൭
0 −3
0 −4
1 5

൱ , ൭
0 −2
1 2
1 1

൱ , ൭
0 −4
1 8
1 1

൱ , ൭
0 −6
1 9
1 2

൱ , ൭
0 −5
1 −1
2 8

൱, 

 ൭
0 −5
3 3
4 4

൱ , ൭
1 −1
5 0
8 2

൱ , ൭
2 −4
3 1
6 9

൱ , ൭
1 −1
1 −4
4 8

൱ ; 

൭
2 4
1 −1
2 1

൱ , ൭
4 8
1 −7
8 7

൱ , ൭
5 5
7 4
4 −2

൱ , ൭
4 7
5 5
2 −4

൱ , ൭
8 6
5 2
3 −3

൱ 

The CIA process was applied to 𝒗 (respectively, 𝒖) of 
Result 4 with respect to 𝒖 (respectively, 𝒗). The 
outcomes are presented as follows. 

Result 7: Pairs of 3D vectors forming an angle of 𝜋 6⁄  
and lying outside 𝐷ଷ , listed as 2 pairs for (𝒖, 𝒘′) 
followed by 3 pairs for (𝒗, 𝒘"). 

൭
0 −1
1 2
1 1

൱ , ൭
0 1
1 −2
7 7

൱ ; 

൭
1 2
0 −1
1 1

൱ , ൭
5 1
4 7
3 −2

൱ , ൭
4 1
9 2
1 −1

൱. 

 
Rational Orthogonal Transformation 

 
When the primary minimal pairs are transformed by 

orthogonal matrices, their image also form special angles. 
If all entries of the orthogonal matrices are rational, then 
- after suitable scalar multiplications - the transformed 
vectors may still lie in the single-digit domain. 

Suppose (𝑝, 𝑞, 𝑟, 𝑠)  to form a Pythagorean 
quadruples, i.e., 𝑝ଶ + 𝑞ଶ + 𝑟ଶ = 𝑠ଶ, which implies 

 𝛼ଶ + 𝛽ଶ + 𝛾ଶ = 1, (12) 

where α = ±𝑝/𝑠, β = ±𝑞/𝑠 and γ = ±𝑟/𝑠. Now define 
row vectors 

 𝒖 = [𝛼, 𝛽, 𝛾], 𝒗 = [𝛽, 𝛾, 𝛼], 𝒘 = [𝛾, 𝛼, 𝛽] (13) 

By adjusting signs appropriately to ensure 
 𝒖 ∙ 𝒗 = 𝒗 ∙ 𝒘 = 𝒘 ∙ 𝒖 = 0 (14) 

these vectors can be stacked (in any order) to form a 
rational orthogonal matrix of size 3 × 3. In fact, a wide 
variety of rational orthogonal matrices can be constructed 
using this approach. For this article, we propose the 
following parameterized form by a positive integer 𝑛 of 
Pythagorean quadruples: 

(𝑝, 𝑞, 𝑟, 𝑠) = (𝑛, 𝑛 + 1, 𝑛(𝑛 + 1), 𝑛ଶ + 𝑛 + 1). 

While existing literature (e.g., Liebeck and Osborne, 
1991) provides general constructions using Cayley 

𝒘 ∙ 𝒖 = ‖𝒗‖ଶ‖𝒖‖ଶ − (𝒖 ∙ 𝒗)ଶ = ‖𝒖‖ଶ‖𝒗‖ଶ sinଶ 𝜃 
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transforms, our approach focuses on explicit and 
elementary constructions using Pythagorean quadruples, 
offering a more accessible path for both computational 
purposes and educational applications. In this 
parameterization, the quadruples for 𝑛 = 1  and 2  are 
(1,2,2,3)  and (2,3,6,7) , respectively. For 𝑛 ≥ 3 , some 
entries exceed the single-digit domain and are thus 
omitted. Examples of rational orthogonal matrices 
constructed in this way are: 

𝑂ଵ =

⎝

⎜
⎛

ଶ

ଷ

భ

య

మ

య

−
ଵ

ଷ
−

ଶ

ଷ

మ

య

−
ଶ

ଷ

మ

య

భ

య⎠

⎟
⎞

, 𝑂ଶ =

⎝

⎜
⎛

ଶ

ଷ

భ

య

మ

య

మ

య
−

ଶ

ଷ
−

ଵ

ଷ
భ

య

మ

య
−

ଶ

ଷ⎠

⎟
⎞

, 

 𝑂ଷ =

⎝

⎜
⎛

଺

଻

మ

ళ

య

ళ

−
ଷ

଻

ల

ళ

మ

ళ

−
ଶ

଻
−

ଷ

଻

ల

ళ⎠

⎟
⎞

. 

The matrices 𝑂ଵ , 𝑂ଶ, and 𝑂ଷ  represent rotations around 
the vectors [0,2, −1]் , [3,1,1]் , and [1, −1,1]் . Let 
ROT denote the “rational orthogonal transformation.” 
 

Results by ROT outside 𝑫𝟑 
 

Applying ROT using 𝑂ଵ , 𝑂ଶ  and 𝑂ଷ  to Result 2 
yields outcomes that exceed 𝐷ଷ . Therefore, we select 
pairs that contain negative but single-digit entries. 
Moreover, the outcomes obtained via 𝑂ଶ  overlap with 
those via 𝑂ଵ and are thus omitted here. Most outcomes 
via 𝑂ଷ result in two-digit entries, leaving only two usable 
pairs. Only two pairs remain. 
 

Result 8: Pairs of 3D vectors(𝒖, 𝒗)  via 𝑂ଵ, include: 7 
pairs with 𝐴(𝒖, 𝒗) = 𝜋 6⁄ , 4 pairs with 𝐴(𝒖, 𝒗) =
𝜋 4⁄ , and 1 pair with 𝐴(𝒖, 𝒗) = 𝜋 3⁄ . Pairs via 𝑂ଷ are 
reduced to 1 pair with 𝐴(𝒖, 𝒗) = 𝜋 6⁄  and 1 pair with 
𝐴(𝒖, 𝒗) = 𝜋 3⁄ . 

൭
−1 −1
0 1
1 2

൱ , ൭
−5 −1
4 1
3 2

൱ , ൭
−1 −4
1 −1
2 9

൱ , ൭
−1 −1
1 0
2 7

൱, 

൭
−2 −1
1 4
3 5

൱ , ൭
−3 −2
1 5
4 7

൱ , ൭
−7 −2
1 3
8 5

൱ ; 

൭
−1 −1
0 4
1 8

൱ , ൭
−1 −1
0 2
1 2

൱ , ൭
−5 −1
4 4
3 8

൱ , ൭
−2 0
1 1
2 7

൱ ; 

൭
−5 0
4 1
3 7

൱ ; ൭
−5 −2
3 −1
8 7

൱ ; ൭
−5 4
3 −1
8 9

൱. 

 
Summary 

 
In this article, we explored grid points in the single-

digit domain of 𝐷ଶ and 𝐷ଷ that generate special angles: 
𝜋 6⁄ , 𝜋 4⁄ , and 𝜋 3⁄ . We theoretically identified 10 pairs 
of 2D vectors and numerically found 28 pairs of 3D 
vectors. Two theoretical tools, CIA and ROT, were 
introduced to complement and extend the primary 
minimal pairs. Through this process, additional 48 pairs 
of 3D integer vectors forming the special angles were 
identified just outside 𝐷ଷ. 

Educators may use these samples as a basis for 
designing original exercises that deepen students' 
understanding of integer vector geometry and angle 
formation. As a byproduct of the theoretical approach to 
the 2D case, we found that no grid points can generate 
angles of 𝜋 6⁄  or 𝜋 3⁄ . This result can naturally be 
extended to other angles, which in turn leads to another 
valuable exercise for advanced students: proving that no 
2D grid points generate 𝜋 12⁄ , 5𝜋 12⁄ , 𝜋 8⁄ , 3𝜋 8⁄ , 𝜋 5⁄ , 
2𝜋 5⁄ , and their supplementary angles. 

Furthermore, the systematic approach developed in 
this study could be extended to higher dimensions or 
different number domains, opening new avenues for 
research and pedagogical applications. Future work may 
explore whether similar constraints exist in 4D integer 
spaces or extend the analysis to alternative domains such 
as Gaussian or Eisenstein integers. 
 

Limitations and Future work 
 

Before formally implementing this approach in the 
classroom, we received informal feedback from 
colleagues suggesting that it could help promote deeper 
student engagement with basic formulas. 

While this study has successfully identified minimal 
pairs of integer vectors generating special angles within 
the single-digit domain, several limitations remain. 

First, although the numerical survey appears 
comprehensive, no formal proof has yet been provided. 

Second, the author employed three matrices, 𝑂ଵ, 𝑂ଶ, 
and 𝑂ଷ , as instances of ROT; however, they were not 
sufficient. Many more rational orthogonal matrices exist. 

Third, the analysis focused exclusively on 2D and 3D 
integer spaces. Extending the methodology to higher 
dimensions (e.g., 4D) or to alternative number domains, 
such as Gaussian or Eisenstein integers, remains an open 
and promising direction for future research. 

These avenues offer opportunities to deepen both 
mathematical theory and its educational applications. 

Although this paper does not provide empirical data 
on student learning, a classroom trial using the identified 
vector pairs is planned for the next academic semester. 
The author intends to analyze student feedback and 
performance in exercises designed around these minimal 
pairs. 
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